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ABSTRACT

Every nonsingular totally positive m-banded matrix is shown to be the

product of m totally positive one-banded matrices and, therefore, the limit

of strictly m-banded matrices. This result is then extended to (bi)infinite,

'nonsingular', totally positive matrices. In the process, such matrices are

shown to possess at least one diagonal whose principal sections are all

nonzero. 
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SIGNIFICANCE AND EXPLANATION

This report deals with certain technical questions regarding totally

positive matrices, i.e., matrices with all minors nonnegative. Such matrices

make their appearance in various areas of analysis. Particular emphasis here

is on totally positive matrices which are also banded (meaning that all

nonzero entries occur in just a few consecutive bands or diagonals) and

biinfinite.

Such matrices occur, for example, in the study of standard spline

approximation schemes such as spline interpolation at knots or least-squares

approximation by splines. Certain questions about such a matrix are much more

easily answered when it is known that the matrix is strictly banded. This

means that all the elements in the two outermost nontrivial bands of the

matrix are nonzero. The answers can then also be applied to a totally

positive matrix which is merely banded provided one knows that there are

strictly banded totally positive matrices arbitrarily close to the matrix of

interest. This useful fact is proved in this report by showing that a non-

singular totally positive matrix can be factored into certain bidiagonal

totally positive matrices, even when the matrices involved are biinfinite.

The responsibility for the wording and views expressed in this descriptive
sumary lies with KRC, and not with the authors of this report.



A FACTORIZATION OF TOTALLY POSITIVE BAND MATRICES

Carl de Boor and Allan Pinkus

1. Introduction. In this paper, we prove the result, needed in 11], that a totally

positive biinfinite band matrix is the limit of 'strictly banded' totally positive matrices

of the same band type. But the tool developed for the proof, viz., the factorization of

such matrices into 'one-banded' totally positive matrices, is of independent and, perhaps,

greater interest.

We came to consider such factorizations because of the recent paper by Cavaretta,

Dahmen, Micchelli and Smith [3] in which such a factorization is derived for strictly

banded totally positive matrices. But we were unable to adapt their arguments, which

involve limits of ratios of entries in a certain matrix inverse, to our situation, and

ended up constructing the needed factors by the more familiar device of elimination

instead. The factorization is first established for finite matrices and is then extended to

biinfinite matrices by a limiting argument. For this, we found it necessary to first prove

that such a totally positive 'nonsingular' matrix has at least one diagonal with the

property that all square finite sections which are principal for that diagonal are

nonsingular.

2. Band dneas. The r-th diagonal or band of a matrix A is, by definition, the

sequence (A(i,i+r)) . As in [2], we call a matrix A mr-handed if all nonzero entries of

A can be found in at most m+1 consecutive bands. Explicitly, the matrix A is m-banded

if

for some I , A(i+l,j) # 0 implies i C j 4 i+m

If both £ and m-1 are nonnegative, then the m+1 nontrivial bands include the 'main

diagonal' or zeroth band, with £ bands to the left of it and r :- m-X bands to the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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right of it. In this situation, we will at times call such a matrix more explicitly

(1,r)-banded.

We call a band matrix strictly banded if the leftmost and the rightmost nontrivial

band contains no zero entries. Among banded matrices, the strictly banded ones are

particularly easy to treat since they correspond to nondegenerate difference operators.

3. Total positivity. A matrix is said to be totally positive (or TP) in case all its

minors are nonnegative.

We use the abbreviation
i I ... I is ) 0 "

for the sxt matrix which has its (U,v)-entry equal to A(i ,j 3. Further, if I and J

are index sets, then

A , : A [ ) ] : - A [ j ,

with il, ..., is, and ill ... , Jt the elements of I and J , respectively, in

increasing order. Occasionally, we will use the additional abbreviation

Finally, replacing the square brackets by round brackets gets us from the matrix to its

determinant:

A( ' ) = det A[""]"

We will make repeated use of

Sylvester's determinant identity (SDI). If A(,) ' 0 and B is the matrix obtained

fro A by

B(i,j) :- A(iJ /A(I) , L_ (i,,) IxJ

then

B(I,) - A(,I:)/A(') •

The submatrix A,i is called the pivot block since the identity is proved by

observing that B is the Schur omplinemt of AIJ  , i.e., the interesting part of what is

-2-



* left in rows \I and columns \J after rows I have been used to eliminate variables

J from the other rows; see, e.g., Gantmacher [
5 1p. 3 1] or Karlin [

7 ;p.3] . In particular,

Corollary 1. rank A[I4j 1 - III + rank B[j,] (for I'0 I 0 -'n J).

corollary 2. a is again TP if A is.

Another result which may be proven by Sylvester's determinant identity (using

induction on III; see Gantmacher #- Krein [6;p.108] or Karlin [7;p.88]) is

Nadaird's inequality. If A is TP and I = I' U I" with I'n I" = 0 , then

A(I) 4 A(I')A(I") .1

4. Shadows. In this section, we prove an ancillary result concerning the existence of

a diagonal in a TP biinfinite matrix which could serve as the main diagonal in a triangular

factorization, i.e., a diagonal all of whose principal sections are nonsingular.

A zero entry in a TP matrix usually 'throws a shadow'. By this we mean that usually

all entries to the left and below it, or else all entries to the right and above it, are
i)i

also zero. More precisely, call the submatrix A[j~jo] the left shadow of the entry
Si'i9

A(io,j 0 ) and, correspondingly, call the submatrix A[j)j 0 ] the right shadow of
J>0

A(i0 ,J0 ). Then the following lemma is known.

Lama. If A is TP and A(i 0 , 0 ) - 0 , but neither A(',J0 ) nor A(io,') is zero,

then either the left or the right shadow of A(i0 ,j0 ) is zero.

Proof. By assumption, A(i0,J,) # 0 for some J, . If J < J, then the right

shadow of A(i0 ,j0 ) can be seen to be zero as follows. First, for any i < i0
i ,i

0 ( A( j,, 0 ) - - A(i 0 ,Jl)A(i,j 0 ) 4 0

-3-



and A(io,jl) 3' 0 implies that A(i,jO ) - 0 for all i < i0  Hence there then exists i1

> i for which A(ij,j 0 ) vf 0 . But now, for any 1 4 i0 , J > J0

0 o A oj 1) = - -ACijO)A(i,j) 4 0

and A(ilj 0 ) # 0 implies that A(i,j) - 0

Finally, if instead J, > J0 , then the left shadow of A(i0 ,jo) is similarly seen to

be zero. III

As an application for later use, note that a zero in the lower triangular part of an

invertible TP matrix necessarily throws a left shadow since all diagonal entries are

nonzero, by Hadamard's inequality.

More generally, for any section of A , i.e., any submatrix AI J  of A made up of

consecutive rows and columns of A , we call the submatrix of A having A1, as its

upper right corner the left shadow of AI, J , and, correspondingly, we call the submatrix

having AI, J  as its lower left corner the right shadow of AI, J - Then we have the

following generalization of the lemma.

PrpOuitiom. If A is TP and AI, J  is a singular section of order n and rank

n- while both A] an. d A[;] are of full rank n , then either the left or the right

shadow of AI, J  has rank n-1

Remark. As in the case n-1 discussed earlier, we will describe this last situation

by saying that such a section A ,3  throws a (left or right) shadow'.

Ploof. By assumption, we can choose (ioj 0 ) E 1xJ so that A(O) 0, with V

I\{i , ':- J\j The assumptiona imply that the Schur complement of AI,,j. , i.e.,
0 0 1 . 3

the matrix B given by

B(r,) :-A(r U1:)/A(:) , all (r,s) j I x3',B~ ~ r ~ ~ [ a U= A S u j " '

is again TP (by Corollary 2 of SDI) and vanishes at (i0,10) while (by Corollary I of SDI)

neither B(i0 ,.) nor B(*,J 0 ) is zero. The lemma therefore implies that either the left
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or the right shadow of B(i0 ,j0 ) is zero, and Corollary 1 of SDI then implies that either

the left or the right shadow of AI J  has rank n-1 II

Corollary. If A is an infinite TP matrix, e.g., A E R x N , then all rows and all

columns of A are linearly independent if and only if A(I) ' 0 for all finite I c N.

Proof. If AI) - 0 for some finite I c N, then Hadamard's Inequality implies the

existence of some n E N for which A(1,...,n) = 0 while A(1,...,n-1) # 0. The

Proposition then implies that either the first n rows or else the first n columns of

A are linearly dependent. II

We now state and prove the corresponding result for a biinfinite TP matrix. This is

somewhat harder since it is not clear a priori which band is to play the role of main

diagonal.

We concentrate on principal sections for a band: A principal section for band r is

any submatrix of the form AI,I+r I with I an interval. In other words, such a principal

section for band r is (i) square, (ii) made up of consecutive rows and columns, and (iii)

has a piece of band r as its main diagonal. We call such a principal section finimally

singular if it is singular but contains no smaller principal section for the same band

which is also singular. Note that, by Hadamard's inequality, every principal section

containing a singular one for the same band is itself singular.

Theorem A. Let A be biinfinite TP and assume that not all minimally singular

sections of A throw their shadow in the same direction. Then, all rows and all columns

of A are linearly independent if and only if all principal sections for some band are

nonsingular, i.e.,

there exists r so that, for all intervals I, A( ~r,' 0
-5I+r
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Proof. The sufficiency of the condition is obvious. So, assume that all rows and all

columns of A are linearly independent. If every band r has a singular principal

section, then every band has a minimally singular one and, all rows and all columns being

linearly independent, each of these throws a shadow, by the proposition. By assumption, not

all of these shadows go in the same direction, i.e., there exist bands r and s so that

some principal section for r throws a shadow to the left while some principal section

for s throws a shadow to the right.

We may assume that r < s . For, if the left shadow is of rank L , say, then every

band q < r has a minimally singular principal section (of order 4 L+1) inside that

shadow, and each must throw its shadow to the left since otherwise the union of the two

shadows would contain a strip of width ) L+1 and of rank 4 L, thus contradicting the

linear independence of rows (or columns) of A .

Further, since every band has a shadow throwing section, we may assume that s - r+1

More explicitly now, we assume that, for some r , there is L ) 0 and i so that

A :. A[ i , ... , i+L is minimally singular with its left shadow of rank L while,i+r, ... ,i+r+L

for some R ) 0 and some k , Ar+1 : A[ k-R ... k is minimally singular with
k+r+1-R, .. k+r+l

its right shadow of rank R

There are three cases, depending on the relative position of these two submatrices.

Case 1: k-i O max(L,R} . Then all columns j in A[i, .:. k] with j I i+r are

i+r i+r+L
+ +

i x x xx x x
x

x
x x

x x x x x x + k
t+

k+r+1-R k+r+1

linear combinations of the L columns i+r+1. ... i+r+L, while all columns j with

j > k+r are linear combinations of the R columns k+r+1-R, ... , k+r , and this holds

even if , e.g., L - 0 since then all columns j with j 4 i+r are zero themselves.

Since i + r+1 4 k + r+1 - R and i + r + L ( k + r , all columns are linear combinations

-6-



of the k-i columns i+r+1, ... , k+r • We conclude that A[i, ,,k] has only rank

k-i, a contradiction to the assumed linear independence of all rows.

Case 2: i+r+L - (k+r+1-R) ) max(L,R} - This is treated analogously. It leads to

columns k+r+1-R, ... , i+r+L being dependent, again a contradiction.

This leaves

Case 3: max{k-i, i+L - (k+1-R)} < max{L,R} . In this case i-k < I + max{L,R}

(L+R) - 1 - min(L,R} , and so

min{L,R 4 k-i < max{L,R}

We claim that this contradicts the minimality of the two sections Ar and Ar+i chosen.

Assume without loss that L < R . Then, since L 4 k-i < R , the r-band section Ar  lies

inside the (larger) (r+1)-band section Ar+l*

i+r i+r+L
+ 41

4 k-R

i •x cx' ....
SXX| " ." "

X .!-A, SDI
i+L x x x

. . ; + k

k+r+1-R k+r+1

By the minimality of Ar+, the L-section Ai+r principal for bandr+1 i+r+L
J

r+1 is nonsingular. In its Schur complement B , the section Ar appears as a zero which,

by assumption, throws a left shadow. But this zero appears on the next-to-main diagonal of

the submatrix Br+I of B corresponding to Ar+1 and this implies det Br+I to be the

product of two of its proper complementary minors. But then, by the singularity of Ar+1

hence of Br+I , some proper principal section of Ar+I must be singular, contradicting

the minimality of Ar+1I•l

-7-
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The assumption that there ought to be shadows thrown in both directions cannot be

ommitted, as the following example shows. Let

I/(i-j) I i~j

B(i,j) 0 <)

Then B is TP and, with iI < ... < is, Jl < 
... < is , we have

iI  ... ,ist t

From B , construct A by deleting every other row. More explicitly,

A(i,j) := B(2i,j), all i,j

Then A is again TP and biinfinite and its rows and columns are linearly independent. But

now every band r has singular principal sections; for example, A(i,i+r) = 0 for all

i<r.

5. Factorization of a finite band matrix.

Theorem B. A TP nonsingular (C,r)-banded nxn matrix A can be factored as

A - L(4) ... LM D UM ... U(r)

with L(k ) a unit-diagonal (1,0)-banded TP, all k , D a diagonal TP, and U(k) a unit-

diagonal (0,1)-banded TP, al' k.

Proof. We obtain the factorization by the standard device of elimination. In the

typical step, we have a nonsingular TP (1,r)-banded matrix A with zeros already in band

-1 in columns 1, ... , k-1 . From it, we obtain the matrix B by subtracting c times

k
+x X x X

x x x x x E+k+r

0 x x x x x +
0 x x x x x

X+k + t x x x x x

x xx x x x

-8-
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row X+k-1 from row Y+k • Thus B differs from A only in row L+k and there only in

entries k, k+l,..., L+k+r-1 because of the zeros in the other entries in row X+k-1 ° In

particular, B is again (X,r)-banded, with zeros in band -1 in columns 1,...,k-1.

We now choose c so that also B(X+k,k) - 0 . If A(X+k,k) - 0 , then the choice c -

0 will do. Otherwise A(X+k,k) 0 0 and then necessarily also A(L+k-l,k) 0 0 (since

A(X+k-l,k) - 0 would throw its shadow to the left because A is nonsingular, and

A(X+k,k) - 0 would follow). But then the positive number

c - A(X+k,k)/A(X+k-1,k)

does the job.

Note that B - CA , with C the identity matrix except for a -c in position

(X+k,X+k-j) . Since the action of C is undone by adding c times row X+k-1 to row

X+k , it follows that

A - EB

with E the identity matrix except for a c in position (k+k,X+k-1)

In order to carry out these steps repeatedly, we need to know

Lema. B is again TP.

Proof. Since B differs from A only in row L+k , we only need to consider minors

of B which involve row X+k . Among these, we only need to consider those minors which do

not involve row X+k-I since the others retain their (nonnegative) value in going from

A to B . Thus we must show that

whenever I and J are index sets of like cardinality and I contains X+k , but not

X+k-1 * Let

I' fie : i ( X+k} I" - {iI : i > L+kl

Then

B(I) A(1) - cA(
I 'hI+kl1")

J

-9-



and there is nothing to prove unless, as we now assume,

A(I ' 'L+ k-1 'I ") > 0

J

which implies, by Hadamard's inequality, that every principal minor of the corresponding

submatrix is strictly positive. We must then show that

A(I)A(I') A(k/A(+k-1 ( - C )JJ k J  k "

For this, let, correspondingly,

J J'u (jlu J"

with J the II' I smallest, and J" the II"I largest, elements of J

We claim that
A J)AI ' +k - l I")  Z +k I"' j XA'+k-l'I"' ~

This inequality follows by II' I-fold application of the inequality

c 1,.,s-ls+l... t+l C(2_.,s-l,s+l .. t+l1
( )1'. . . .' t 2, .• .' t

C(1 
' 

... . s+2,.,t+l C(2,'
, 

s s+2,.,t+l

valid for any TP matrix C , because of the identity

1 ........ , t 2.... s s ...

= C(22,.t
+
1) 

.
(

.  
t C(1 ' s+2''t+1)2

valid for such matrices. This identity is proved, e.g., in Karlin [71p.8] . It may also be

proven by SDI applied to the (t+1)x(t+1) matrix obtained by adjoining to the first t+1

rows and t columns of C the additional column (1,0 ,..., 0 )T , and taking

c[1,., s-1 ,s+2,. ,t+l
2,. * . t

as the pivot block.

Unfortunately, the corresponding argument involving dropping of the last few rows and

columns reverses the sign in (*) and so provides the irrelevant inequality

A(X+K,'I")A, X+k-1, I") A,+k ,( +k-1

j ,j./ j ,j. /A•

-10-



Instead, we observe next that

,EL+k ' " , , +k -1 ,I " X+k ,'I ")/ ., +k -1 ,II"
Aj ,j.)/A( j ,jJ A( k ,j./A k ,J")

This follows from the fact that
,(+kI" A+k II" ,+k ,+k-I

A( " j J"'c~J~jAL j j.)/A J_ j ,.) C( j )/C( j_

with the matrix C given by

C(U,v) :- A(11.) , all ,v,

hence TP (by SDI), and therefore the ratio is monotone nondecreasing in j for j to the

left of J" , while the strict positivity of

• . ~~A(I'+-'"
J

implies, via Hadamard's inequality, that A(I k ) > 0 , and so k 4 j (recall that

A( k ) = 0 for v < k ).

This leaves us, finally, with the task of showing that

,X+k,I"),AX+k-1,I", A( +k)/A(£+k-1JA( k ,j ./ k ,J"in) k " k "

But that is now obvious since A(i,k) - 0 for i > X+k , hence

Z£+kI" XAf+k-1,' 1" k i tJ" = (+k /AX+k-1
A( k :,."/A( k :,J.) , A k-)Af 1:) "A( k)/A(k

k III

We conclude that a nonsingular (1,r)-banded TP matrix A can be factored as

A = E ..... E (n- 1) B

with B again TP but only (X-1,r)-banded , while, for each k , E(k) is the identity

matrix except for some nonnegative ck in position (X+k,1+k-1) But then
L) E(1) °E(n-P.)
L E ..

is a (1,0)-diagonal matrix with unit diagonal and the nonnegative number ck in position

(1+kj+k-1) , k-1,...,n-X , and zero everywhere else. Consequently, L(4) is (1,0)-banded

and TP.

We conclude that a nonsingular (1,r)-banded TP matrix A can be factored as

A L .. .L(B

-11-



with B a (0,r)-banded TP matrix and each L(k) a TP (1,0)-banded matrix with unit

diagonal. Applying this last statement to BT and transposing the result finishes the

proof of Theorem A. II

6. Factorization of a (b) infinite band matrix.

Theorem C. A TP (bi)infinite m-banded matrix A whose rows and columns are linearly

independent can be factored as

A - R
( 1 ) 

... R
( M ) 

D

with each R(k ) a TP one-banded matrix with maximum entry in each column equal to 1 and

D a TP diagonal matrix with 0 < D(j,j) 4 max i A(i,j), all j

Proof. If A is biinfinite, then we know from Theorem A that all principal sections

for some band of A are nonsingular. Assume without loss of generality that the zeroth

band is such a distinguished band and that A is, more explicitly, (1,r)-banded. Then we

know that, for all n,

An :' A[-n, ... , n]

is nonsingular. If A is only infinite, A c RNx N  say, then we know from the Corollary to

the Proposition in Section 4 that, for all n,

An = A[1,...,n]

is nonsingular.

In either case, Theorem B assures us that An has a factorization

L ) (1) (1) (r)
A n= L n ... L n PnU n ... Unn n n n n n

with L(k ) unit-diagonal (1,0)-banded TP, U(k ) unit-diagonal (0,1)-banded TP, and Dnn n

diagonal TP. We intend to let n go to infinity and therefore must deal with the fact that

these factors may not be bounded independently of n

-12-



For this, define one-banded matrices S , ... , S as follows. Starting with
(-I) C-e ) (-1)

, define S ... S successively by

(-k) _ (-k) (k)(M(-k+l)) - l
S : L L~)n~ l)

with M
(
-
k + 1 ) 

the diagonal matrix having maxi(M (-k) L(k))(i,j) in its J-th diagonal
n

position. This number cannot be zero (by induction on k ) since M(- E - I and L M is
n

unit-diagonal. It follows that each S
(
k) is a (1,0)-banded TP matrix with maximum

entry 1 in each column, and
L ( ) ... L 1 ) . S(-£, ... S(IM (0)

n n

Now continue the procesa, starting with M( 1) :- M(0 )Dn , getting successively S "'), *

5Cr) by
(
k) M(k)u(k) (k+l))-1

s n (M

with M(k+1) the diagonal matrix having maxi(M k)U k))(i,j) in its j-th position.

We arrive at the factorization

A S S S ... slM R1  ... R En n n n

with each R(k ) one-banded TP and m:xinum entry I in each column, and En a diagonal TPn

matrix. We claim that

0 < E n(j,j) 4 max A(i,j) , all J
i

We know that

A(i,j) R ' (1)(i'jl ) Rl ( "2 "' R(M)llj -1J)EnlJm'J)

J1 JI n 'I n 2 Rn M1 m 1 On~m'

with all sumands nonnegative. Further, for at least one choice of i , one of the summanda

is Just EnlJ,j) since, starting with Jm - j , we can pick Jm-1 Jm-2' ... ' JI : i in

sequence so that R Jk-M Jk) - 1 But then A(J0,J) ) En(j,j)

We can now let n go to infinity through a subsequence of H in such a way that each

of the matrices R M ) converges entrywise to some (bi)infinite matrix R(k) , necessarilyn

one-banded TP with maximum entry I in each column, and En likewise converges to some

diagonal matrix D satisfying 0 4 D(J,J) 4 maxiA(i,j) , all J , while

A - RM1 1 
... R"

1 
D

-13-



But then 0 < D(j,j) all j , since otherwise A(*,J) -0 , contradicting the linear

independence of the columns of A o II

Corollary. Let A be a (bi)infinite TP m-banded matrix whose rows and columns are

linearly independent. Then A is the limit of strictly m-banded (bi)infinite TP matrices,

and this limit is unifor' (i.e., in norm) if A is bounded.

Proof. Replace each zero entry in the two interesting bands of R( k ) above by

(k)£ > 0 to obtain the strictly one-banded TP matrix R , all k . Then£

(1) (Mn)
A :- R ... R D

is strictly m-banded TP (as a product of strictly banded TP matrices) and converges

entrywise to A as C - 0 * Since the entries of R(k ) are bounded by 1 while those

of D are bounded by IAIM  , this convergence is obviously uniform in case A. < - .111

Remark. The assumption that the rows and columns of A are linearly independent is

not bothersome in the intended use of this corollary in [1) since there A is even

boundedly invertible. But it would be nice to know whether this assumption is necessary. We

note that Metelmann (8] has obtained strictly one-banded TP factorizations for finite

strictly (L,r)-banded TP matrices and that Cryer [4] has obtained one-banded TP

factorizations for arbitrary finite TP matrices. But, the procedure given by Cryer may

produce more than m 1-banded factors unless the matrix is strictly m-banded.

-14-
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